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Ascent organizes the microphysical processes in clouds, as it is the source of supersaturation. The increase of supersaturation with height drives ‘in-cloud activation, which is the source

of most cloud-droplets aloft in deep convective updrafts.

Any cloud can be viewed as a system of feedback processes linking the various microphysical species of hydrometeors.

Here the microphysical quasi-equilibrium (QE) in an ascending adiabatic parcel of a single phase, either liquid or ice, is elucidated by an analytical theory in zero-D with drastic

simplifications (Phillips 2022).
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Overview

Results: Trajectory in Phase-Space and Stability Results: QE and Contrast between

Convective and Stratiform Clouds

Linear perturbation analysis yields the feedback parameter, revealing a
neutral line in the phase-space.
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Prolonged in-cloud droplet activation during deep ascent is predicted here, and involves
precipitation depleting cloud-liquid, which causes an inexorably increasing supersaturation.
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Results: Sensitivity to Aerosol Conclusions
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In-cloud activation is triggered by the onset of precipitation during sufficient ascent, with
ascent only needing to exceed twice that at cloud-base.
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Feedbacks are initially positive, with explosive growth of the system state until it attains a
realm of negative feedbacks and stability. Quasi-equilibria are reached (flow-charts above).
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Stratiform-vs-convective contrast adequately predicted.

POLLUTED

st
CONFROL
MARITIME ‘\
- | e

J
I

References and Acknowledgements

MARITIME |

: Ochs, H., 1978: Moment-conserving techniques for warm cloud microphysical computation. Part |I. Model testing and results. J.
CONTROL (g,) |
[ 1

Atmos. Sci., 35, 1959-1973

| | CONTROL

& secondary

[ |== =POLLUTED CCN
- |— — — & secondary P¢3LLUTED

MARITIME CCN . | ——eand g i I
& secondary | MARITIME CCN (gp)

| - and ¢
e s ¢ c sqpy . ONTR('LI

10"

POLLUTED

L and q
2 | == =POLLUTED CCN (g,)

V. T. J. Phillips, 2022: Theory of in-cloud activation of aerosols and microphysical quasi-equilibrium in a deep updraft. J. Atmos.
Sci., 79, in press

109 101 '
10°

2 ; |
— * — . Acknowledgments: Support is acknowledged from FORMAS (award: 2018-01795), VR (award: 2015-05104),
¢ {_‘ﬂ C 3 Tfﬂ ” ¢o C6 (T }“ US Department of Energy (award: DE-SC0018932) and Vinnova (award: 2020-03406).




	Theory of In-Cloud Activation and Microphysical Quasi-Equilibrium in Deep Ascent�V. T. J. Phillips ��Department of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden �

