High resolution modelling of the Malmö extreme precipitation event of August 2014 – a sensitivity study.

Lisa Bengtsson, FoUm, SMHI

Acknowledgement: Patrick LeMoigne, Meteo-France, Patrick Samuelsson, SMHI, Peter Berg, SMHI, Magnus Lindskog, SMHI.

Extreme precipitation event over Malmö, August 2014

Automatic observations, Malmö. 15 minute acc precip. Lennart Wern, SMHI.

85 mm in 6 hours (!) 107.4 in the 24 hour period

Foto: Stig-Åke Jönsson / TT

Motivation

- What aspects of the numerical simulations are most important in order predict the event?
 - Horizontal resolution
 - Physical parameterizations
 - Initial state
 - Lateral boundary conditions
- How sensitive is the event to changes in sea surface temperature, soil moisture content and surface heat fluxes?

SST AROME (ECMWF)

Radar sequence (mm/h), 01 Z

Radar sequence (mm/h), 02 Z

Radar sequence (mm/h), 03 Z

Radar sequence (mm/h), 04 Z

Radar sequence (mm/h), 05 Z

Radar sequence (mm/h), 06 Z

Radar sequence (mm/h), 07 Z

Radar sequence (mm/h), 08 Z

Radar sequence (mm/h), 09 Z

Radar sequence (mm/h), 10 Z

Radar sequence (mm/h), 11 Z

Radar sequence (mm/h), 12 Z

12 hour accumulated precipitation.

12 h acc

AROME, 00 Z + 12 h acc

Experimental setup

- 2.5 km resolution
 (1.3 km resolution)
- "Cold start" ECMWF (Surface DA optimal interpolation)
- Explicit deep convection (Parameterized deep convection)

Domain averaged 15 min acc. Precipitation. Impact of surface data assimilation.

Internally generated surface fields are needed to get the correct initial onset! For nowcasting in meso-scale models, surface data assimilation is essential!

Domain averaged 15 min acc. Precipitation. How long surface "spin-up", 1 day, 1 week, 2 weeks?

Initial amounts increase slightly with longer spin-up, otherwise small impact on domain average.

1 hour acc. precip at 01 Z Impact of length of surface spin-up

35.0

30.0

25.0

15.0

10.0

5.0

3.0

1.0

0.5

35.0

30.0

25.0

20.0

15.0

10.0

5.0

3.0

1.0

0.5

Domain averaged 15 min acc. Precipitation. Impact of 12 hour old lateral boundary conditions

Initial amount of precipitation identical, slower onset.

1 h acc precip, at 07 UTC. Impact of 12 hour old later bc's

Domain averaged 15 min acc. Precipitation. Impact of high resolution and parameterized conv.

Not much impact on average, some differences in the details.

1 h acc precip, at 07 UTC. Impact of high-res, param deep conv

Explicit Conv 2.5 km

35.0

30.0

25.0

20.0

15.0

10.0

5.0

3.0

1.0

0.5

35.0

30.0

25.0

20.0

15.0

10.0

5.0

3.0

1.0

0.5

1 h acc precip, at 12 UTC. Impact of high-res, param deep conv

5.0

3.0

1.0

05

5.0

3.0

1.0

0.5

Explicit Conv 2.5 km

35.0

30.0

25.0

20.0

15.0

10.0

5.0

3.0

1.0

0.5

35.0

30.0

25.0

20.0

15.0

10.0

5.0

3.0

1.0

0.5

Sensitivity of the event to increased sea surface temperature (SST).

- Reference
- SST 2 degrees K
- SST + 2 degrees K
- SST + 5 degrees K
- SST comes from ECMWF at initial time and remains constant throughout the simulation.

Domain averaged 15 min acc. precipitation. Impact of modified SST

CAPE

Heat-Fluxes (latent/sensible)

Sensitivity of the event to increased soil moisture

- Reference
- Soil-moisture * 0.5
- Soil-moisture * 1.5

Domain averaged 15 min acc. precipitation. Impact of modified Soil Moisture

CAPE

Heat fluxes (latent/sensible)

Drying of soil yields larger sensible heat values compared with reference.

Sensitivity of the event to increased/reduced transpiration

Domain averaged 15 min acc. precipitation. Impact of modified transporation

Heat-fluxes

Summary and conclusions

- Two regimes:
 - First, synoptically driven convection (embedded within a front), that got an energy boost from the relatively warm sea. Thus sensitive to synoptic setup, but insesitive to land surface model, and small sensitivity to horizontal resolution and model physics.

-> Makes it interesting for EPS

 Later in the day open cell convection, strongly coupled to the land surface model, stronger sensitivity to horizontal resolution and model physics.

-> Here we have a chance to improve our prediction by improved surface atmosphere coupligng, improved surface DA, higher resolution and improved physics.

HarmonEPS – AROME memebers

